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Abstract

The SU(5) grand unified model of Howard Georgi and S. L. Glashow was among the first
attempts to embed the standard model in a larger gauge group and explain some of the standard
model’s arbitrary features. This model based on SU(5) henceforth called the Georgi-Glashow
model has met with partial success and has given us some interesting insights and predictions.
I briefly review the main features of the model based on my reading of the topic.

1 Introduction

The current theory of the strong, weak and electromagnetic interactions is based on the group
SUc(3)×SUL(2)×UY (1) ≡ Gs. We believe that there is a spontaneous symmetry breaking (SSB)
at around 100GeV breaking SUL(2)× UY (1) → Uem(1) via the Higgs-Anderson mechanism. This
theory prosaically referred to as the ‘Standard Model’ (SM) has been tremendously successful in
describing and interpreting almost all phenomena encountered to date in high energy physics (ig-
noring neutrinos). But despite its phenomenal successes (See for example [1]) the SM is considered
by its practitioners as an incomplete theory with many free parameters that will be explained by
a more fundamental theory of the interactions. Some of the unsatisfactory features in the SM are
[2],
(a) The pattern of groups and representations is complicated and arbitrary.
(b) The strong, weak, and electromagnetic fine structure constants are not related in any funda-
mental way and the Weinberg angle cannot be calculated in SM.
(c) The question of charge quantization is left unanswered.
(d) The particle masses are arbitrary since we do not know how to fix the Yukawa couplings.
(e) Gravity is not included in the SM.

One attempt to explain and relate some of the arbitrary parameters in the SM is through grand
unified theories (GUTs) [2]. The idea of GUTs is to embed the SM group Gs into a larger group G
and try to relate the previously arbitrary features of SM through the additional symmetries present.
For instance if G is simple then it has only one coupling constant before SSB and we may try to
relate the SM couplings and the electro weak angle through renormalization group flow. Then the
idea is that G undergoes SSB (sometimes multiple) to Gs,

G −→ SUc(3)× SUL(2)× UY (1) ≡ Gs −→ SUc(3)× Uem(1) (1)

Currently the most interesting candidates for G are SU(5) , SO(10) , E6 and the semi-simple
group SUc(3) × SUL(3) × SUR(3). In this report we look at a GUT model based on the simple
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group SU(5) [3]. In section 2 we briefly review the formalism of SU(n) Lie algebra and in section
3 we introduce the SU(5) Georgi-Glashow model. Section 4 examines some of the model’s features
and section 5 is the conclusion.

2 SU(n) Lie algebras

The SU(n) Lie group is the the set of n × n unitary matrices with determinant one . A general
SU(n) transformation may be written as

U = Exp
[
−iΣn2−1

k=1 βpLp
]

(2)

where Lp are the n2 − 1 generators of the SU(n) Lie algebra. The generators are chosen to be
Hermitian and traceless. The Lp may be normalized so that trace(LaLb) = δab/2 (See for example
[4]). SU(n) has n − 1 Cartan generators and is hence of rank n − 1. This means that we can
simultaneously diagonalize n− 1 generators. To take an example, SU(3) is of rank 2 and we take
the Cartan generators as the hypercharge (Y ) and the third component of the isospin (I3).

Any vector ψj = (ψ1, ψ2, ψ3, .....) in Cn is mapped as

ψj → ψ
′
j = Uij ψj (3)

The ψjs form the basis for what is called the fundamental representation of SU(n) and is denoted
by n. The conjugate representation is defined by the ψjs and is denoted n∗. It transforms as

ψ
′ j = U j

i ψ
i (4)

We may also construct higher rank tensor representations for SU(n) that transform as

ψ
′ i1 i2 i3 ...
j1 j2 j3 ..... = (U i1

l1
U i2

l2
....)(Uk1

j1
Uk2

j2
....)ψ l1 l2 l3 .....

k1 k2 k3 ..... (5)

For the SU(n) gauge theory there are n2 − 1 Hermitian gauge fields Ai.
The covariant derivatives for n∗ and n are defined in the usual way,

(Dµψ)a = [∂µδ
a
b − ig(Aµ.L(n∗) )a

b ]ψ
b (6)

(Dµχ)a =
[
∂µδ

b
a − ig(Aµ.L(n) )b

a

]
χb (7)

In the case of SU(5) we use the labeling i = (α, r) for a representation where the index α ε 1, 2, 3
denotes the SU(3) content and r ε 4, 5 denotes the SU(2) index. One other point to note is that the
irreducible representations in the decomposition of the product of representations may be readily
found using the method of Young tableaux [5]. For example in the case of SU(5),

5∗ × 10 = 5 + 45 (8)

We are now ready to introduce the Georgi-Glashow model.
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3 Georgi-Glashow model

The SM group Gs is a rank 4 group and hence the GUT group G must be of atleast rank 4. There
are exactly nine rank 4 local Lie groups that involve only one coupling strength. It was argued
by Georgi and Glashow in 1974 that among these only the SU(5) has the most desired properties
to form G [3]. One strong reason is that among the nine groups only SU(5) and SU(3) × SU(3)
have complex representations. Among them SU(3) × SU(3) can be eliminated since it cannot
accommodate both integrally and fractionally charged particles.

The matter left handed (LH) fields in SM are in the representations SUc(3)× SUL(2),

(uα, dα)L : (3,2) ; (νe, e
−)L : (1,2) ; uc α

L , dc α
L : (3∗,1) ; e+L : (1,1) (9)

where the superscript c denotes charge conjugation. The simplest realization of the model incor-
porates the 15 LH fields in the representations,

ψi : 5 = (3,1,−1/3) + (1,2,1/2) ; Fundamental representation (10)

ψi : 5∗ = (3∗,1,1/3) + (1,2,−1/2) ; Conjugate representation (11)

ψij : 5⊗A 5 ≡ 10 = (3∗,1,−2/3) + (3,2,1/6) + (1,1,1) ; Antisymm. rep. (12)

Comparing (9) with (10), (11), and (12) shows that the SM fields of a generation may be snugly
accomodated in 5∗ + 10. To make the above a little more explicit, a possible representation of 5∗

ignoring Cabibo type mixing may be,

5∗ : ψL =
(
dc

1, d
c
2, d

c
3, e

−,−νe

)
L

(13)

The SU(5) has 24 generators represented by generalized Gell-Mann matrices. The 24 gauge bosons
Aa

b transform according to the adjoint representation, decomposing as,

24 = (8,1,0) + (1,3,0) + (1,1,0) + (3,2∗,−5/6) + (3∗,2,+5/6) (14)

with the identification

Gα
β : (8,1,0) ; W±,W 0 : (1,3,0) ; B : (1,1,0) ; Ar

α : (3,2∗,−5/6) ; Aα
r : (3∗,2,+5/6)

(15)
It is seen that apart from the 12 gauge bosons in the SM there are 12 new Baryon-Lepton number
violating gauge bosons Ar

α and Aα
r that carry both flavor and color. They are traditionally denoted

as,
Ar

α ≡ (Xα, Yα) ; Aα
r ≡ (Xα, Yα)T (16)

Using the relation for the charge operator acting on a representation,

Q̂(ψp
q ) = Qq − Qp (17)

we deduce the charges of the X and Y gauge bosons as,

QX = −4/3 ; QY = −1/3 (18)

The X and Y gauge bosons are also sometimes referred to as di-quark and lepto-quark gauge bosons
to denote the processes they mediate. One consequence of these extra bosons is that protons may
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undergo decay and this places strong experimental constraints on the X and Y gauge boson masses.
The proton life time may be calculated in the Georgi-Glashow model and it is found that [2]

τp ∼
1
α2

(5)

M4
X

m5
p

(19)

where α(5) is the SU(5) fine structure constant and MX and mp are the gauge boson and proton
masses. The observational constraint τp ≥ 1030yrs gives MX & 1014GeV. In the next section we
further explore the phenomenology of the Georgi-Glashow model.

4 Phenomenology of SU(5) GUTs

The phenomenological implications of the Georgi-Glashow model dictates how viable it is as a
theory of the SM interactions. So let us explore some of the features of the SU(5) model. We
follow the treatment in [5].

Charge quantization is automatic in the SU(5) scheme since the group is simple and hence the
charge generators have discrete eigenvalues. In the SU(5) GUT the charge operator must be some
linear combination of the Cartan generators. Since the charge operator commutes with SUc(3)
generators (since gluons carry no charge) it must be of the form,

Q = I3 +
Y

2
= I3 + k I0 (20)

where I3 and I0 are the Cartan generators belonging to SU(2) and U(1). The normalization of
the Cartan generators are fixed by the commutation relations but we also require consistency with
(13),

Y (5) = (−2/3,−2/3,−2/3, 1, 1) (21)

fixing the constant in (20) as k = −(5/3)1/2. This yields the charge operator matrix,

Q̂(ψi) = Diag (−1/3,−1/3,−1/3, 1, 0) (22)

Since the generators must be traceless we have from above the interpretation that,

3Qd + Qe+ = 0 (23)

Thus the reason that the quarks carry 1/3 the charge of the leptons is because of the fact that
they come in 3 colors. This is a remarkable explanation for the charge assignments in the SM that
relates color and hypercharge.

Next we turn to the the question of anomalies in the Georgi-Glashow model. The anomaly in
any representation is proportional to [6],

Dabc = tr
[
{T a

R, T
b
R}T c

R

]
=

1
2
A(R) dabc (24)

where dabc is defined by the relation

{La, Lb} = 2 dabcLc (25)
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Since A(R) is independent of the generators we may use any simple generator to calculate it.
Choosing the generators as the charge operator (20), we have

A(5∗)
A(10)

=
tr Q3(ψi)
tr Q3(ψij)

= −1 (26)

Thus we see that for the fermions in the 5∗ and 10 representations the anomalies cancel them-
selves,

A(5∗) + A(10) = 0 (27)

The GUT with a simple group has by definition a single coupling constant. The possibility of
different subgroup couplings is realized through SSB, when the X and Y gauge bosons achieve
masses and thus contributes differently to radiative corrections. Let us try to extract information
about the Weinberg angle from the Georgi-Glashow model. At a scale much above MX,Y we have

g3 = g2 = g1 = g5 (28)

where the subscripts refer to strong, weak, electromagnetic and SU(5) respectively. The Weinberg
angle is defined as,

Sin2(θW ) =
g′ 2

g2 + g′ 2
(29)

where g and g′ are the coupling constants of the A′
µ and B′

µ gauge bosons in the electroweak theory.
With the properly normalized generators of SU(5) we have the identification g′ = −(3/5)1/2 g1 and
g = g2. Then from (28) and (29) we have the result that above the GUT scale,

Sin2(θW ) =
g′ 2

g2 + g′ 2
=

3/5
3/5 + 1

=
3
8

(k2 > MX) (30)

Using renormalization group equations we can study how the coupling constants flow from this
scale down to the electroweak scale and this gives [5],

Sin2(θW ) ' 0.21 (k2 ∼MZ) (31)

This is surprisingly close to the measured value at the scale of MZ which is Sin2(θW ) = 0.23120(15)
[7].

The Georgi-Glashow model also has many other interesting phenomenological implications that
we do not discuss here. One interesting conjecture pertains to the baryon asymmetry in the universe
as resulting from the presence of the X,Y lepto-quark gauge bosons and CP violation in the model.
Another fascinating topic is the origin of flavor and mixing angles in the model. The interested
reader is referred to the excellent review of GUTs by Langacker [2] and [5].

5 Conclusions

We have seen that the grand unified theory introduced by Georgi and Glashow based on the group
SU(5) displays many attractive features and attempts to relate some of the arbitrary features of
the standard model : It explains charge quantization and relates the quark and lepton charges, the
anomalies automatically cancel and it is found that the prediction for the electroweak angle is quite
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close to the measured value. In spite of its many successes and features the current view point
is that a GUT based on SU(5) alone is incomplete. One reason is the observation that neutrinos
carry small masses and the strong indication that there might be right handed Majorana neutrinos
(See for example [8]). It is not very straight forward to introduce right handed neutrinos in the
SU(5) model. This has renewed interest in GUTs based on the gauge group SO(10) where the
spinor representation can readily accommodate the 16 left handed fields and also GUTs based on
the exceptional group E6 which is motivated by string theories [2]. But in most of the models SU(5)
does appear as an intermediate step after SSB. Thus in the current context the Georgi-Glashow
model must be viewed as not an incorrect but as an incomplete theory of the SM interactions [9].
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